Chenyang LI

CONTACT INFORMATION

Address:	College of Chemistry Beijing Normal University 19 Xinjiekou Outer St Beijing 100875, China	E-mail: GitHub:	chenyang.li@bnu.edu.cn www.github.com/lcyyork		
Professional Experience					
2021 — no	ow Associate Professor, Beijing Normal U	Jniversity, Bei	jing, China		
2015 — 20	020 <i>Postdoctoral Fellow,</i> Emory Universit Advisor: Professor Francesco A. Eva	:y, Atlanta, GA 1ngelista	A, USA		
Educat	ION				
2012 — 20	015 Doctor of Philosophy, University of C Advisor: Professor Henry F. Schaefe	¦eorgia, Athen er III	s, GA, USA		
2008 — 20	012 Bachelor of Science, Nanjing Universit Advisor: Professor Shuhua Li	ty, Nanjing, Ji	angsu, China		
Research Interests					
Developments of accurate electronic structure methods for excited states					

- Developments of analytic energy gradients for low-order perturbation theories
- Theoretical studies of elementary hydrocarbon species in combustion chemistry
- Software developments
 - [1] FORTE: an open-source plugin to PsI4 (https://github.com/psi4/psi4) that implements a variety of quantum chemistry methods for strongly correlated electrons. For the current version, see https://github.com/evangelistalab/forte.
 - [2] DSRG GENERATOR: an automatic equation and code generator for second-quantized operators based on generalized normal ordering of Mukherjee and Kutzelnigg.

TEACHING EXPERIENCE

2013 summer	Lecturer for the quantum chemistry summer school	
	Center for Computational Quantum Chemistry, The University of Georgia	
2012 — 2013	Teaching assistant for General Chemistry Lab I and II Department of Chemistry, The University of Georgia	

PUBLICATIONS

- 20. He, N.; Li, C. and Evangelista, F. A.* "Second-Order Active Space Embedding Theory" J. Chem. Theory Comput. submitted.
- 19. Wang, S.*; Li, C.* and Evangelista, F. A.* "Analytic Energy Gradients for the Driven Similarity Renormalization Group Multireference Second-Order Perturbation Theory" *J. Chem. Theory Comput. submitted.*
- 18. Huang, M.; Li, C. and Evangelista, F. A.* "Theoretical Calculation of Core-Excited States Along Dissociative Pathways Beyond Second-order Perturbation Theory" *J. Chem. Theory Comput. submitted.*

- 17. Li, C.* and Evangelista, F. A. "Spin-free implementation of the multireference driven similarity renormalization group: A benchmark study of open-shell diatomic molecules and spin-crossover energetics" *J. Chem. Phys.* 2021, 155, 114111.
- 16. Xu, Z.; Huang, Z.; Li, C.*; Huang, T.; Evangelista, F. A.; Tang, M. L.* and Lian, T.* "Tuning the Quantum Dot (QD) / Mediator Interface for Optimal Efficiency of QD-Sensitized Near-Infrared-to-Visible Photon Upconversion Systems" ACS Appl. Mater. Interfaces 2020, 12, 36558–36567.
- 15. Li, C.* and Evangelista, F. A. "Connected Three-Body Terms in the Single-Reference Unitary Many-Body Theories: Iterative and Perturbative Approximations" *J. Chem. Phys.* 2020, 152, 234116.
- 14. Wang, S.; Li, C.* and Evangelista, F. A. "Analytic Gradients for Single-Reference Driven Similarity Renormalization Group Second-Order Perturbation Theory" *J. Chem. Phys.* 2019, *151*, 044118. [Editor's Pick]
- Zhang, T.*; Li, C.* and Evangelista, F. A.* "Towards Efficient Multireference Driven Similarity Renormalization Group Theory: Sequential Transformation Approach, Density Fitting and Non-Interacting Virtual Orbital Approximation" *J. Chem. Theory Comput.* 2019, 15, 4399–4414.
- 12. Li, C.*; Lindh R.* and Evangelista, F. A.* "Dynamically-Weighted Multireference Perturbation Theory: Combining the Advantages of State-Specific and Multi-State Theories" *J. Chem. Phys.* 2019, *150*, 144107.
- 11. Li, C.* and Evangelista, F. A.* "Multireference Theories of Electron Correlation Based on the Driven Similarity Renormalization Group" *Annu. Rev. Phys. Chem.* 2019, 70, 245–273.
- Schriber, J. B.; Hannon, K. P.; Li, C. and Evangelista, F. A.* "A Combined Selected Configuration Interaction and Many-Body Treatment of Static and Dynamical Correlation in Oligoacenes" J. Chem. Theory Comput. 2018, 14, 6295–6305.
- 9. Huang, Y.; Xu, Z.; Jin, S.; Li, C.; Warncke, K.; Evangelista, F. A.*; Lian, T.* and Egap, E.* "Conjugated Oligomers with Stable Radical Substituents: Synthesis, Single Crystal Structures, Electronic Structure and Excited State Dynamics" *Chem. Mater.* **2018**, *30*, 7840–7851.
- Li, C.* and Evangelista, F. A.* "Driven Similarity Renormalization Group for Excited States: A State-Averaged Perturbation Theory" J. Chem. Phys. 2018, 148, 124106. [Editor's Pick]
- 7. Li, C.; Verma, P.; Hannon, K. P. and Evangelista, F. A.* "A Low-Cost Approach to Electronic Excitation Energies Based on the Driven Similarity Renormalization Group" *J. Chem. Phys.* 2017, *147*, 074107.
- 6. Li, C.* and Evangelista, F. A.* "Driven Similarity Renormalization Group: Third-Order Multireference Perturbation Theory" J. Chem. Phys. 2017, 146, 124132; Erratum: 2018, 148, 079902.
- Hannon, K. P.; Li, C. and Evangelista, F. A.* "An Integral-Factorized Implementation of the Driven Similarity Renormalization Group Second-Order Multireference Perturbation Theory" J. Chem. Phys. 2016, 144, 204111.
- Li, C. and Evangelista, F. A.* "Towards Numerically Robust Multireference Theories: The Driven Similarity Renormalization Group Truncated to One- and Two-Body Operators" *J. Chem. Phys.* 2016, 144, 164114; Erratum: 2018, 148, 079903.
- 3. Li, C. and Evangelista, F. A.* "Multireference Driven Similarity Renormalization Group: A Second-Order Perturbative Analysis" J. Chem. Theory Comput. 2015, 11, 2097–2108.
- 2. Li, C.; Agarwal, J.; Wu, C.-H.; Allen, W. D. and Schaefer, H. F.* "The Intricate Internal Rotation Surface and Fundamental Infrared Transitions of *n*-Propyl Radical" *J. Phys. Chem. B* **2015**, *119*, 728–735.
- Li, C.; Agarwal, J. and Schaefer, H. F.* "The Remarkable [ReH₉]²⁻ Dianion: Molecular Structure and Vibrational Frequencies" *J. Phys. Chem. B* 2014, 118, 6482–6490.

ORAL PRESENTATIONS

Apr. 202132nd CCS Congress, Zhuhai, Guangdong, ChinaSpin-Free Implementation of the Multireference Driven Similarity Renormalization Group

Jan. 2020	<i>Department of Chemistry, Beijing Institute of Technology,</i> Beijing, China Connected Triples in the Single-Reference Unitary Many-Body Theories	
Oct. 2019	(Withdraw) <i>Workshop on New Methods for Strongly Correlated Electrons,</i> Qingdao, China Connected Triples in Single-Reference Driven Similarity Renormalization Group	
Apr. 2019	257th ACS National Meeting, Orlando, FL, USA Towards Perturbative Triples Corrections in the Multireference Driven Similarity Renormalization Grou	
Sept. 2018	Atlanta Mini Symposium on Theoretical and Computational Chemistry, Atlanta, GA, USA Recent Developments of Multireference Driven Similarity Renormalization Group	
May 2018	<i>Department of Physics, Northwest University,</i> Xi'an, Shaanxi, China Recent Developments of Multireference Driven Similarity Renormalization Group	
May 2018	<i>Chinese Academy of Sciences Computer Network Information Center,</i> Beijing, China Recent Developments of Multireference Driven Similarity Renormalization Group	

Poster Presentations

Oct. 2021	14th National Conference of Quantum Chemistry (CCS), Shanghai, China Analytic Energy Gradients for DSRG-MRPT2	
July 2017	American Conference on Theoretical Chemistry, Boston, MA, USA Driven Similarity Renormalization Group Multireference Perturbation Theory	
May 2017	Southeast Theoretical Chemistry Association, Oxford, MS, USA Driven Similarity Renormalization Group: Third-Order Multireference Perturbation Theory	
July 2016	International Society for Theoretical Chemical Physics, Grand Forks, ND, USA Driven Similarity Renormalization Group: Third-Order Multireference Perturbation Theory	
Feb. 2016	Sanibel Symposium, St. Simons, GA, USA Multireference Driven Similarity Renormalization Group Truncated to One- and Two-Body Operators	
Oct. 2015	<i>Emerson Center Lectureship Award Symposium,</i> Atlanta, GA, USA Multireference Driven Similarity Renormalization Group: A Second-Order Perturbative Analysis	
May 2014	<i>Southeast Theoretical Chemistry Association</i> , Atlanta, GA, USA The Intricate Internal Rotation Surface and Fundamental Infrared Transitions of <i>n</i> -Propyl Radical	

Other Experience

- [1] Algorithms, a four-course specialization by Stanford University on Coursera, earned on December 5, 2017
- [2] Deep Learning, a five-course specialization by deeplearning.ai on Coursera (finished first four)
- [3] Self-Driving Car Nano-Degree on Udacity (Term 1)
 - Implemented a convolutional neural network (LeNet-5) to classify traffic signs using TensorFlow. [Link]
 - Built a convolutional neural network using Keras that can autonomously drive a vehicle on the simulator. [Link]
 - Implemented a pipeline to identify the lane boundaries in a video using OpenCV. [Link]